Non-Leptonic Weak Decays of Strange B Mesons

Neelesh Sharma

Department of Physics, Punjabi University, Patiala, India.

YongPyong-High1 2015 Joint Winter Conference on Particle Physics, String and Cosmology Jan. 25 - 31, 2015 High1 resort

Outline of talk

- Introduction (Motivation)
- Axial Vector Meson Spectroscopy
- Methodology
- Decay Constants and Form Factors
- Summary

Introduction

- The less explained/understood spectrum of *p*-wave mesons has posed serious problems in studies involving these particles. Therefore, the *p*-wave emitting decays of heavy flavor hadrons has always been challenging.
- Over the years, a lot of interest has been developed in study of these decay channels due to experimental observation of many decay modes.
- Also, recent observations by LHCb on CP-asymmetries of decays of strange bottom (B_s) meson have taken much attention. The study of B_s meson decays can shed some light on underlying dynamics involving heavy flavor hadrons within and beyond the Standard Model.
- With intensive efforts underway at several laboratories, one expects a complete understanding of the hadronic aspects or even perhaps New Physics (NP) in *B* meson sector.
- In the present work, we give preliminary estimates of axial-vector meson emitting weak decays of *B_s* meson.

AXIAL-VECTOR MESON SPECTROSCOPY

Experimentally, two types of the axial-vector mesons exist i.e. ${}^{3}P_{1}(J^{PC} = 1^{++})$ and ${}^{1}P_{1}(J^{PC} = 1^{+-})$

For 1^{++}

Isovector : $a_1(1.230)$: a_1^+ , a_1^- , a_1^0

Isoscalars:

$$f_1(1.285) = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d})\cos\phi_A + (s\bar{s})\sin\phi_A$$

 $f_1'(1.512) = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d})\sin\phi_A - (s\bar{s})\cos\phi_A$
 $\chi_{c1}(3.511) = (c\bar{c})$

where

 $\phi_A = \theta(ideal) - \theta_A(physical)$

For 1⁺⁻

Isovector :

$$b_1(1.229): b_1^+, b_1^-, b_1^0$$

Isoscalars:

$$h_{1}(1.170) = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d})\cos\phi_{A'} + (s\bar{s})\sin\phi_{A'}$$
$$h_{1}'(1.380) = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d})\sin\phi_{A'} - (s\bar{s})\cos\phi_{A'}$$

 $h_{c1}(3.526) = (c\bar{c})$

where

$$\phi_{A'} = \theta(ideal) - \theta_{A'}(physical)$$

with

$$\phi_{\scriptscriptstyle A} = \phi_{\scriptscriptstyle A'} = 0^\circ$$

MIXING IN STARNGE AND CHARM AXIAL-VECTOR MESONS

$$A(l^{\scriptscriptstyle ++})$$
 and $A'(l^{\scriptscriptstyle +-})$

Mixing of Strange states

$$K_{1}(1.270) = K_{1A} \sin \theta_{1} + K_{1A'} \cos \theta_{1},$$

$$\underline{K}_{1}(1.400) = K_{1A} \cos \theta_{1} - K_{1A'} \sin \theta_{1}.$$

$$\theta_{1} = -58^{0}(-37^{0})$$

Mixing of Charmed and Strange Charmed states

$$D_{1}(2.427) = D_{1A} \sin \theta_{D_{1}} + D_{1A'} \cos \theta_{D_{1}},$$

$$\underline{D}_{1}(2.422) = D_{1A} \cos \theta_{D_{1}} - D_{1A'} \sin \theta_{D_{1}},$$

&

 $D_{s1}(2.460) = D_{s1A} \sin \theta_{D_{s1}} + D_{s1A'} \cos \theta_{D_{s1}},$ $\underline{D}_{s1}(2.535) = D_{s1A} \cos \theta_{D_{s1}} - D_{s1A'} \sin \theta_{D_{s1}},$ However, in the heavy quark limit, the physical mass eigenstates with $J^P = 1^+$ are $P_1^{3/2}$ and $P_1^{1/2}$ rather than ${}^{3}P_1$ and ${}^{1}P_1$ states as the heavy quark spin decouples from the other degrees of freedom so that

$$|P_1^{1/2} > = -\sqrt{\frac{1}{3}} |^{1}P_1 > +\sqrt{\frac{2}{3}} |^{3}P_1 >,$$

$$|P_1^{3/2} > = \sqrt{\frac{2}{3}} |^{1}P_1 > +\sqrt{\frac{1}{3}} |^{3}P_1 >.$$

Mixing of Charmed states

$$D_1(2.427) = D_1^{1/2} \cos \theta_2 + D_1^{3/2} \sin \theta_2,$$

$$\underline{D}_1(2.422) = -D_1^{1/2} \sin \theta_2 + D_1^{3/2} \cos \theta_2.$$

Mixing of strange-Charmed states

$$D_{s1}(2.460) = D_{s1}^{1/2} \cos \theta_3 + D_{s1}^{3/2} \sin \theta_3,$$

$$\underline{D}_{s1}(2.535) = -D_{s1}^{1/2} \sin \theta_3 + D_{s1}^{3/2} \cos \theta_3.$$

with

$$\theta_2 = (-5.7 \pm 2.4)^\circ \qquad \theta_3 \approx 7^\circ$$

For η and η' pseudoscalar states, we use

$$\eta(0.547) = \frac{1}{\sqrt{2}} (u\bar{u} + d\bar{d}) \sin\phi_p - (s\bar{s}) \cos\phi_p,$$

$$\eta'(0.958) = \frac{1}{\sqrt{2}} (u\bar{u} + d\bar{d}) \cos\phi_p + (s\bar{s}) \sin\phi_p,$$

where $\phi_p = \theta(ideal) - \theta_p(physical) \cdot \theta_p(physical) = -15.4^\circ \cdot \eta_c$ is taken as $\eta_c(2.979) = (c\overline{c})$.

Methodology

FACTORIZATION SCHEME (Preliminary Estimates of BRs)

Factorization is the assumption that the two-body hadronic decays of *B* mesons can be expressed as the product of two independent hadronic currents:

$$<\!M_1\!M_2\,|\,J_{\mu}J^{\mu\dagger}\,|\,B\!>\approx<\!M_1\,|\,J_{\mu}\,|\,0\!>\!<\!M_2\,|\,J^{\mu\dagger}\,|\,B\!>$$

The decay amplitude is given by

$$B \to M_1 + M_2 = \frac{G_F}{\sqrt{2}} (Cabibbo \ factors \times QCD \ factors) \times \\ \left\{ \langle M_1 | J_\mu | 0 \rangle \langle M_2 | J^{\mu\dagger} | B \rangle + \langle M_2 | J_\mu | 0 \rangle \langle M_1 | J^{\mu\dagger} | B \rangle \right\}.$$

Three classes of the decays:

- 1. Class I transition (caused by color favored),
- 2. Class II transition (caused by color suppressed) and
- 3. Class III transition (caused by both color favored and color suppressed diagrams).

WEAK HAMILTONIAN

a. The CKM favored $b \rightarrow c$ transition,

$$H_{W} = \frac{G_{F}}{\sqrt{2}} \{ V_{cb} V_{ud}^{*} [c_{1}(\bar{c}b)(\bar{d}u) + c_{2}(\bar{d}b)(\bar{c}u)] + V_{cb} V_{cs}^{*} [c_{1}(\bar{c}b)(\bar{s}c) + c_{2}(\bar{s}b)(\bar{c}c)] + V_{cb} V_{cs}^{*} [c_{1}(\bar{c}b)(\bar{s}c) + c_{2}(\bar{s}b)(\bar{c}c)] + V_{cb} V_{cd}^{*} [c_{1}(\bar{c}b)(\bar{d}c) + c_{2}(\bar{d}b)(\bar{c}c)] \},$$

b. The CKM suppressed $b \rightarrow u$ transition,

$$H_{W} = \frac{G_{F}}{\sqrt{2}} \{ V_{ub} V_{cs}^{*} [c_{1}(\bar{u}b)(\bar{s}c) + c_{2}(\bar{s}b)(\bar{u}c)] + V_{ub} V_{ud}^{*} [c_{1}(\bar{u}b)(\bar{d}u) + c_{2}(\bar{d}b)(\bar{u}u)] + V_{ub} V_{ud}^{*} [c_{1}(\bar{u}b)(\bar{d}c) + c_{2}(\bar{d}b)(\bar{u}c)] \},$$

Where
$$\bar{q}q = \bar{q}\gamma_{\mu}(1-\gamma_{5})q$$
 and $c_{1}(\mu) = 1.26, c_{2}(\mu) = -0.51at\mu \approx m_{c}^{2}, c_{1}(\mu) = 1.12, c_{2}(\mu) = -0.26at\mu \approx m_{b}^{2}.$

DECAY AMPLITUDES AND RATES for $B \rightarrow PA$ $\Gamma(B \rightarrow PA) = \frac{p_c^3}{8\pi m_A^2} |A(B \rightarrow PA)|^2$

where

$$p_{c} = \frac{1}{2m_{B}} \{ [m_{B}^{2} - (m_{P} + m_{A})^{2}] [m_{B}^{2} - (m_{P} - m_{A})^{2}] \}^{1/2}$$

The factorization Scheme expresses the decay amplitudes as a product of matrix element of the weak currents

$$\begin{array}{l} \left\langle PA \middle| H_{w} \middle| B \right\rangle \Box \left\langle P \middle| J^{\mu} \middle| 0 \right\rangle \left\langle A \middle| J_{\mu} \middle| B \right\rangle + \left\langle A \middle| J^{\mu} \middle| 0 \right\rangle \left\langle P \middle| J_{\mu} \middle| B \right\rangle, \\ \left\langle PA' \middle| H_{w} \middle| B \right\rangle \Box \left\langle P \middle| J^{\mu} \middle| 0 \right\rangle \left\langle A' \middle| J_{\mu} \middle| B \right\rangle + \left\langle A' \middle| J^{\mu} \middle| 0 \right\rangle \left\langle P \middle| J_{\mu} \middle| B \right\rangle. \end{array}$$

The matrix element of current between mesons states are expressed as

$$\begin{split} \langle P \big| J_{\mu} \big| 0 \rangle &= -i f_{P} k_{\mu} ,\\ \langle A \big| J_{\mu} \big| 0 \rangle &= \in_{\mu}^{*} m_{A} f_{A} ,\\ \langle A' \big| J_{\mu} \big| 0 \rangle &= \in_{\mu}^{*} m_{A'} f_{A'} ,\\ \langle A(P_{A}) \big| J_{\mu} \big| B(P_{B}) \rangle &= l \in_{\mu}^{*} + c_{+} (\in^{*} \cdot P_{B}) (P_{B} + P_{A})_{\mu} + c_{-} (\in^{*} \cdot P_{B}) (P_{B} - P_{A})_{\mu} ,\\ \langle A'(P_{A'}) \big| J_{\mu} \big| B(P_{B}) \rangle &= r \in_{\mu}^{*} + s_{+} (\in^{*} \cdot P_{B}) (P_{B} + P_{A'})_{\mu} + s_{-} (\in^{*} \cdot P_{B}) (P_{B} - P_{A'})_{\mu} , \end{split}$$

and

$$\left\langle P(P_{P}) \Big| J_{\mu} \Big| B(P_{B}) \right\rangle = \left(P_{B\mu} + P_{P\mu} - \frac{m_{B}^{2} - m_{P}^{2}}{q^{2}} q_{\mu} \right) F_{I}^{BP}(q^{2}) + \frac{m_{B}^{2} - m_{P}^{2}}{q^{2}} q_{\mu} F_{0}^{BP}(q^{2}).$$

$$\left\langle A(k_A, \epsilon) \left| A_{\mu} \right| B(k_B) \right\rangle = iq' \varepsilon_{\mu\nu\alpha\beta} \in^{\nu} (k_B + k_A)^{\alpha} (k_B - k_A)^{\beta},$$
$$\left\langle A'(k_A, \epsilon) \left| A_{\mu} \right| B(k_B) \right\rangle = i\nu \varepsilon_{\mu\nu\alpha\beta} \in^{\nu} (k_B + k_{A'})^{\alpha} (k_B - k_{A'})^{\beta}$$

Finally the decay amplitude becomes

$$A(B \to PA) = (2m_A f_A F_1^{B \to P}(m_A^2) + f_P F^{B \to A}(m_P^2)),$$
$$A(B \to PA') = (2m_{A'} f_{A'} F_1^{B \to P}(m_{A'}^2) + f_P F^{B \to A'}(m_P^2))$$

where

$$F^{B \to A}(m_P^2) = l(m_P^2) + (m_B^2 - m_A^2) c_+(m_P^2) + m_P^2 c_-(m_P^2),$$

$$F^{B \to A'}(m_P^2) = r(m_P^2) + (m_B^2 - m_{A'}^2) s_+(m_P^2) + m_P^2 s_-(m_P^2).$$

$B \to A \,/\, A'$ Transition Form Factors in ISGW II quark Model

The form factors have the following expressions in the ISGW II model

$$\begin{split} l &= -\tilde{m}_{B}\beta_{B}[\frac{1}{\mu_{-}} + \frac{m_{2}\tilde{m}_{A}(\tilde{\omega}-1)}{\beta_{B}^{2}}(\frac{5+\tilde{\omega}}{6m_{1}} - \frac{m_{2}\beta_{B}^{2}}{2\mu_{-}\beta_{BA}^{2}})]F_{5}^{(l)}, \\ c_{+} + c_{-} &= -\frac{m_{2}\tilde{m}_{A}}{2m_{1}\tilde{m}_{B}\beta_{B}}\left(1 - \frac{m_{1}m_{2}\beta_{B}^{2}}{2\tilde{m}_{A}\mu_{-}\beta_{BA}^{2}}\right)F^{(c_{+}+c_{-})}, \\ c_{+} - c_{-} &= -\frac{m_{2}\tilde{m}_{A}}{2m_{1}\tilde{m}_{B}\beta_{B}}\left(\frac{\tilde{\omega}+2}{3} - \frac{m_{1}m_{2}\beta_{B}^{2}}{2\tilde{m}_{A}\mu_{-}\beta_{BA}^{2}}\right)F^{(c_{+}-c_{-})}, \\ r &= \frac{\tilde{m}_{B}\beta_{B}}{\sqrt{2}}[\frac{1}{\mu_{+}} + \frac{m_{2}\tilde{m}_{A}}{3m_{1}\beta_{B}^{2}}(\tilde{\omega}-1)^{2}]F_{5}^{(r)}, \\ s_{+} + s_{-} &= -\frac{m_{2}}{2\tilde{m}_{B}\beta_{B}}\left(1 - \frac{m_{2}}{m_{1}} + \frac{m_{2}\beta_{B}^{2}}{2\mu_{+}\beta_{BA}^{2}}\right)F^{(s_{+}+s_{-})}, \\ s_{+} - s_{-} &= -\frac{m_{2}}{2m_{1}\beta_{B}}\left(\frac{4-\tilde{\omega}}{3} - \frac{m_{1}m_{2}\beta_{B}^{2}}{2\tilde{m}_{A}\mu_{+}\beta_{BA}^{2}}\right)F^{(s_{+}-s_{-})} \end{split}$$

The $t \equiv q^2$ dependence is given by

$$\tilde{\omega} - 1 = \frac{t_m - t}{2\overline{m}_B \overline{m}_A},$$

$$(\tilde{m}_A)^{\frac{1}{2}} (\beta_{-}\beta_{-})^{\frac{5}{2}} [1 - 1 - 1]^{-3}$$

and

$$F_{5} = \left(\frac{\tilde{m}_{A}}{\tilde{m}_{B}}\right)^{\frac{1}{2}} \left(\frac{\beta_{B}\beta_{A}}{B_{BA}}\right)^{\frac{1}{2}} \left[1 + \frac{1}{18}h^{2}(t_{m} - t)\right]^{-3}$$
 Inverse size of meson

where

$$h^2 = \frac{3}{4m_cm_q} + \frac{3m_d^2}{2\overline{m}_B\overline{m}_A\beta_{BA}^2} + \frac{1}{\overline{m}_B\overline{m}_A}(\frac{16}{33 - 2n_f})\ln[\frac{\alpha_s(\mu_{QM})}{\alpha_s(m_q)}]$$

$$\mu_{\pm} = \left(\frac{1}{m_q} \pm \frac{1}{m_b}\right)$$

Quark content	иd	$u\overline{s}$	<u>ss</u>	сū	CS	иb	sb	cc
β_s (GeV)	0.41	0.44	0.53	0.45	0.56	0.43	0.54	0.88
β_p (GeV)	0.28	0.30	0.33	0.33	0.38	0.35	0.41	0.52

The parameter $\beta~$ for s-wave and p-wave mesons in the ISGW II model

Transition	1	\mathcal{C}_+	С.
$B_s \rightarrow f_1'$	-1.847	-0.043	-0.0067
$B_s \rightarrow K_1$	-2.623	-0.038	-0.0085
$B_s \rightarrow D_{s1}$	-0.661	-0.062	-0.0040

Form factors of $\mathbf{B}(0^-) \rightarrow A(1^+)$ transition at $q^2 = t_m$ in the ISGW II quark Model

Form factors of $\mathbf{B}(0^-) \rightarrow A'(1^+)$ transition at $q^2 = t_m$ in the ISGW II quark Model

Transition	r	<u>S</u> +	<i>S</i> -
$B_s \rightarrow h_1'$	2.388	0.143	-0.107
$B_s \to \underline{K}_1$	2.124	0.128	-0.096
$B_s \rightarrow \underline{D}_{s1}$	0.965	0.124	-0.048

Form factors of $B(0^{-}) \rightarrow P(0^{-})$ transition

Transition	$F_0^{B_cP}(0)$
$B_s \rightarrow \eta'$	0.35
$B_s \rightarrow D_s$	0.67
$B_s \to K$	0.35

These form factors are calculated in relativistic quark model with flavor dependent effects. [Rohit Dhir, Neelesh Sharma and RC Verma, J.Phys. G 35, 085002 (2008)]

DECAY CONSTANTS (in GeV) OF THE AXIAL-VECTOR MESONS

The decay constants for axial-vector mesons are defined by the matrix elements given previouly (slide 13). It may be pointed out that the axial-vector meson states are represented by 3×3 matrix and they transform under the charge conjugation as

$$M_a^b({}^{3}P_1) \to M_b^a({}^{3}P_1), \qquad M_a^b({}^{1}P_1) \to -M_b^a({}^{1}P_1), \quad (a = 1, 2, 3).$$

Since the weak axial-vector current transfers as $(A_{\mu})_{a}^{b} \rightarrow (A_{\mu})_{b}^{a}$ under charge conjugation, the decay constant of the ¹P₁ meson should vanish in the SU(3) flavor limit [M. Suzuki PRD 47, 1252 (1993); 55, 2840 (1997)].

Experimental information based on τ decays gives decay constant $f_{K_I}(1270) = 0.175 \pm 0.019$ GeV [H. Y. Cheng, PRD 67, 094007 (2003)], while decay constant for $K_I(1.400)$ can be obtained from relation $f_{K_I}(1.400)/f_{K_I}(1.270) = \cot \theta_I$ i.e. $f_{K_I}(1.400) = (-0.087 \pm 0.012)$ GeV, for $\theta_I = -58^\circ$.

Numerous analysis based on phenomenological studies indicate that strange axial vector meson states mixing angle $\theta_{\rm K}$ lies in the vicinity of ~ 35° and ~ 55°. Recently, it has been pointed out [H.Y. Cheng, PLB 707, 116 (2012)] that mixing angle $\theta_{\rm K} \sim 35^\circ$ is preferred over ~ 55°. It is based on the observation that choice of angle for f - f' and h - h' mixing schemes (which are close to ideal mixing) are intimately related to choice of mixing angle $\theta_{\rm I}$. However, we use $\theta_{\rm K} = -58^\circ$ in our numerical calculations.

≻In case of non-strange axial vector mesons, the mixing angle for strange axial vector mesons and SU(3) symmetry determines $f_{al} = 0.223$ GeV. Since, a_1 and f_1 lies in the same nonet we assume $f_{fl} \approx f_{al}$ under SU(3) symmetry. Due to charge conjugation invariance decay constants for ${}^{1}P_{1}$ nonstrange neutral mesons $b_{0,}$ $h_{1}(1.235)$, $h_{l}(1.170)$, and $h'_{l}(1.380)$ vanish. Also, owing to G-parity conservation in the isospin limit decay constant $f_{bl} = 0$.

SUMMARIZED DECAY CONSTANTS (in GeV)

$$f_{K_1(1270)} = 0.175, \ f_{\underline{K}_1(1.400)} = -0.087, \ f_{a_1} = 0.203, \ f_{f_1} \approx f_{a_1}$$

 $f_{D_{1A}} = -0.127, \ f_{D_{1B}} = 0.045, \ f_{D_{s1A}} = -0.121, \ f_{D_{s1B}} = 0.038,$
 $f_{\chi_{c1}} \approx -0.160.$

PSEUDOSCALAR MESON

$$f_{\pi} = 0.131, \quad f_{K} = 0.160, \quad f_{D} = 0.223, \quad f_{D_{s}} = 0.294,$$

 $f_{\eta_{c}} \approx 0.400.$

Decays	Branching ratios	Decays	Branching ratios
$\Delta b = 1, \Delta C = 1, \Delta$	S = 0	$\Delta b = 1, \Delta C = 0, \Delta t$	S = -1
$\overline{B}_{s}^{0} \to K^{0} D_{1}^{0}$	9.1×10 ⁻⁵	$\overline{B}_{s}^{0} \rightarrow \eta \chi_{c1}$	4.3×10 ⁻⁵
$\overline{B}_{s}^{0} \to K^{0}\underline{D}_{1}^{0}$	1.8×10 ⁻⁶	$\overline{B}_{s}^{0} \to \eta' \chi_{c1}$	3.8×10 ⁻⁵
$\overline{B}_{s}^{0} \to \pi^{-} D_{s1}^{+}$	3.6×10 ⁻³	$\overline{B}_{s}^{0} \to D_{s}^{+} D_{s1}^{-}$	2.1×10-3
$\overline{B}_{s}^{0} \to \pi^{-}\underline{D}_{s1}^{+}$	3.0×10 ⁻⁴	$\overline{B}_{s}^{0} \to D_{s}^{+}\underline{D}_{s1}^{-}$	6.3×10 ⁻⁵
$\overline{B}_{s}^{0} \to D^{0} K_{1}^{0}$	1.4×10-3	$\overline{B}_{s}^{0} \to D_{s}^{-}D_{s1}^{+}$	6.9×10 ⁻³
$\overline{B}_{s}^{0} \to D^{0}\underline{K}_{1}^{0}$	7.3×10 ⁻⁷	$\overline{B}_{s}^{0} \to D_{s}^{-}\underline{D}_{s1}^{+}$	9.3×10 ⁻⁴
$\overline{B_s^0} \to D_s^+ a_1^- \operatorname{O}(10)$	⁻²) ◀ 9.9×10 ⁻³	$\overline{B}_s^0 \to \eta_c f_1'$	1.1×10 ⁻³
$\overline{B}_{s}^{0} \to D_{s}^{+}b_{1}^{-}$	8.9×10 ⁻⁸	$\overline{B}_{s}^{0} \to \eta_{c} h_{1}'$	9.4×10-4

Branching ratios for $B \to PA$ decays in CKM-favored mode involving $b \to c$ transition

Decays	Branching ratios	Decays Bran	ching ratios
$\Delta b = 1, \Delta C = 1$	$I, \Delta S = -1$	$\Delta b = 1, \Delta C = 0, \Delta S =$	= 0
$\overline{B}_{s}^{0} \rightarrow \eta D_{1}^{0}$	2.4×10 ⁻⁶	$\overline{B}_{s}^{0} \to K^{0} \chi_{c1}$	4.5×10 ⁻⁶
$\overline{B}_{s}^{0} \rightarrow \eta \underline{D}_{1}^{0}$	5.0×10 ⁻⁸	$\overline{B}_s^0 \to D_s^+ D_1^-$	(1.3×10 ⁻⁴)
$\overline{B}_{s}^{0} \to K^{-}D_{s1}^{+}$	2.7×10-4	$\overline{B}_{s}^{0} \to D_{s}^{+}\underline{D}_{1}^{-}$	2.5×10-6
$\overline{B}_{s}^{0} \to K^{-}\underline{D}_{s1}^{+}$	2.3×10 ⁻⁵	$\overline{B}_{s}^{0} \to D^{-}D_{s1}^{+}$	(2.4×10 ⁻⁴)
$\overline{B}_{s}^{0} \rightarrow \eta' D_{1}^{0}$	2.6×10-6	$\overline{B}_{s}^{0} \to D^{-}\underline{D}_{s1}^{+}$	3.0×10 ⁻⁵
$\overline{B}_{s}^{0} \rightarrow \eta' \underline{D}_{1}^{0}$	5.4×10 ⁻⁸	$\overline{B}_{s}^{0} \rightarrow \eta_{c} K_{1}^{0}$	1.4×10 ⁻⁴
$\overline{B}_{s}^{0} \to D^{0} f_{1}'$	3.9×10 ⁻⁵	$\overline{B}_{s}^{0} \rightarrow \eta_{c} \underline{K}_{1}^{0}$	1.2×10 ⁻⁶
$\overline{B}_{s}^{0} \to D^{0}h_{1}'$	2.3×10 ⁻⁵		
$\overline{B}_{s}^{0} \to D_{s}^{+} K_{1}^{-}$	4.1×10 ⁻⁴	_	
$\overline{B}_{s}^{0} \to D_{s}^{+} \underline{K}_{1}^{-}$	1.2×10-4	-	

Branching ratios for $B \to PA$ decays in CKM-suppressed mode involving $b \to c$ transition

	D	- Decays	Decays Branching ratios		and Vera,
Decays	Branching ratios	-	This Work	CMV	PRD 76,
$\Delta b = 1, \Delta C = -1, \Delta S$	=-1	Δ	$b=1, \Delta C=0, \Delta S$	= 0	094019 (2007)
$\overline{B}_{s}^{0} \to K^{+} D_{s1}^{-}$	(1.5×10 ⁻⁵)	$\overline{B}_{s}^{0} \rightarrow K^{+}a_{1}^{-}$	36.37×10-6	19.2×10-6	
$\overline{B}_{s}^{0} \to K^{+}\underline{D}_{s1}^{-}$	7.6×10 ⁻⁷	$\overline{B}_{s}^{0} \to K^{+}b_{1}^{-}$	3.07×10 ⁻¹⁰	-	
$\overline{B}_{s}^{0} \rightarrow \eta \overline{D}_{1}^{0}$	4.5×10 ⁻⁷	$\overline{B}_s^0 \to K^0 a_1^0$	9.78×10-9	0.09×10 ⁻⁶	
$\overline{B}_{s}^{0} \rightarrow \eta \overline{\underline{D}}_{1}^{0}$	1.6×10 ⁻⁸	$\overline{B}_{s}^{0} \to K^{0} f_{1}$	1.16×10 ⁻⁶	0.03×10 ⁻⁶	
$\overline{B}_{s}^{0} \rightarrow \eta' \overline{D}_{1}^{0}$	4.9×10 ⁻⁷	$\overline{B}_{s}^{0} \to \pi^{0} K_{1}^{0}$	2.28×10-6	-	
$\overline{B}{}^{0}_{s} \rightarrow \eta' \overline{\underline{D}}{}^{0}_{1}$	1.8×10 ⁻⁸	$\overline{B}^0_s \to \pi^0 \underline{K}^0_1$	8.56×10-10	-	
$\overline{B}{}^0_s \to \overline{D}{}^0 f'_1$	5.9×10 ⁻⁶	$\overline{\overline{B}_{s}^{0}} \rightarrow \pi^{-} K_{1}^{+}$	81.86×10-6	-	
$\overline{B}_{s}^{0} \to \overline{D}^{0} h_{1}'$	3.5×10-6	$\overline{\overline{B}_{s}^{0}} \to \pi^{-} \underline{K}_{1}^{+}$	3.13×10 ⁻⁸	-	
$\overline{B}_s^0 \to D_s^- K_1^+$	3.3×10-4	$\underline{\overline{B}_{s}^{0} \rightarrow \eta K_{1}^{0}}$	1.40×10 ⁻⁶	-	
$\overline{B}_{s}^{0} \to D_{s}^{-} \underline{K}_{1}^{+}$	2.6×10-7	$\overline{\overline{B}_s^0} \to \eta \underline{K}_1^0$	3.58×10 ⁻¹⁰	-	
		$\overline{B}_{s}^{0} \rightarrow \eta' K_{1}^{0}$	8.13×10-7	-	
		$\overline{B}_{s}^{0} \rightarrow \eta' \underline{K}_{1}^{0}$	6.05×10 ⁻¹¹	-	

Branching ratios for $B \rightarrow PA$ decays involving $b \rightarrow u$ transition

Decays	Branching ratios		Decays	Branching ratios	
•	This Work	CMV	`	This Work	
Δb	$=1,\Delta C=0, A$	$\Delta S = -1$	$\Delta b = 1, \Delta C = -1, \Delta S = 0$)	
$\overline{B}_{s}^{0} \to K^{+}K_{1}^{-}$	1.5×10-6	3.3×10 ⁻⁶	$\overline{B}_{s}^{0} \to K^{+}D_{1}^{-}$	8.7×10-7	
$\overline{B}{}^0_s \to K^+ \underline{K}{}^1$	4.6×10-7	1.8×10 ⁻⁶	$\overline{B}_{s}^{0} \to K^{+}\underline{D}_{1}^{-}$	3.0×10 ⁻⁸	
$\overline{B}{}^0_s \to \pi^0 f'_1$	7.5×10 ⁻⁸	-	$\overline{B}{}^0_s \to K^0 \overline{D}{}^0_1$	4.7×10 ⁻⁸	
$\overline{B}^{0}_{s} \to \pi^{0} h'_{1}$	3.5×10 ⁻⁸	-	$\overline{B}{}^0_s \to K^0 \underline{\overline{D}}{}^0_1$	1.6×10-9	
$\overline{B}_{s}^{0} \rightarrow \eta a_{1}^{0}$	2.6×10-8	0.14×10 ⁻⁶	$\overline{B}_{s}^{0} \to D^{-}K_{1}^{+}$	1.0×10 ⁻⁵	
$\overline{B}_{s}^{0} \rightarrow \eta f_{1}$	3.08×10 ⁻⁸	0.19×10 ⁻⁶	$\overline{B}{}^0_s \to D^- \underline{K}{}^+_1$	5.4×10-9	
$\overline{B}_{s}^{0} \rightarrow \eta f_{1}'$	4.55×10 ⁻⁸	-	$\overline{B}{}^0_s \to \overline{D}{}^0 K^0_1$	5.7×10-7	
$\overline{B}_{s}^{0} \rightarrow \eta h_{1}'$	2.16×10 ⁻⁸		$\overline{B}{}^0_s \to \overline{D}{}^0 \underline{K}{}^0_1$	3.0×10 ⁻¹⁰	
$\overline{B}_{s}^{0} \to K^{-}K_{1}^{+}$	6.31×10 ⁻³	-			
$\overline{B}{}^0_s \to K^- \underline{K}{}^+_1$	1.80×10-9	-	-		
$\overline{B}_{s}^{0} \to \eta' a_{1}^{0}$	2.96×10-8	0.14×10 ⁻⁶	-	· · · · ·	
$\overline{B}_{s}^{0} \to \eta' a_{1}^{0}$	2.96×10-8	0.14×10 ⁻⁶	- Highly St	uppressed	
$\overline{B}_{s}^{0} \rightarrow \eta' f_{1}$	3.51×10-8	0.18×10 ⁻⁶	_		
$\overline{B}_{s}^{0} \to \eta' f_{1}'$	2.59×10-8	-	_		
$\overline{B}_{s}^{0} \rightarrow \eta' h_{1}'$	1.28×10 ⁻⁸	-	_		

Branching ratios for $B \rightarrow PA$ decays involving $b \rightarrow u$ transition

Summary

- The BRs of *p*-wave meson emitting decays are naively expected to be kinematically suppressed. However, we find that BRs of B_s decays emitting p-wave meson in the final state is of the same order that of B to PP/VP/VV
- Some of the charm conserving ($b \rightarrow c$) modes have rather large BRs of the O(10⁻²/10⁻³) involving D_s meson in the final state.
- The next order branching ratios are observed in a few b -> u transition modes but others remain suppressed.
- CKM suppressed $\Delta C = 0, \Delta S = -1 \& \Delta C = -1, \Delta S = 0$ modes in *b-> u* remain highly suppressed but these may acquire possible penguin contributions.

THANK YOU